To request a class, please contact HSLS Data Services.
In this workshop, you will learn how to create a project using concept sets, datasets, and workbooks, and discover how to use code snippets to accomplish more advanced tasks. You'll explore the full potential of the All of Us Researcher Workbench, gain practical skills in creating a project from start to finish, and learn how to use code snippets to enhance your research capabilities.
In this workshop, we will introduce the notion of concept sets and their role in observational research with Electronic Health Record (EHR) data. Whether you're a new user of the All of Us Researcher Workbench or an experienced one, this workshop will provide valuable insights into leveraging the platform to meet your research needs.
Agenda:
If you’ve ever uploaded data or analysis code to a public repository, you may have been prompted to choose a license from dozens of options. But what’s the difference between the GNU license vs. MIT license? What does Creative Commons actually do? And how do licenses interact with copyright and formal Data Use Agreements? This session will explain the basics of licensing and help participants choose an appropriate license for their openly-accessible research products.
This workshop aims to empower researchers with the essential skills needed to utilize bioinformatics tools operated through the Command Line Interface. It will cover Unix/Linux shell navigation, FTP transfers, file, and directory management, text editor functions, shell scripting, and data analysis with bioinformatics software.
What is a Data Management Plan? This session will answer that question, as well as describe the steps to creating a DMP, tools that can help with DMP development, and post-award management issues. University of Pittsburgh-specific guidelines and support resources will also be shared.
Many funders, publishers, and institutions require researchers to make their research data public, but practical challenges can act as a barrier to sharing data, especially in the health sciences. This hands-on workshop will guide participants through the data sharing process, from initial study design to data deposit. Exercises will prompt participants to think through issues of data documentation, reuse value, and promotion of their own research projects.
This is a flipped class covering the more advanced topics in R programming for data analysis and the second part of a three-part series: Introduction to R; Data Wrangling in R, and Data Visualization in R. Upon registration, you will receive links to workshop materials (PowerPoint slides, lecture videos, and practice exercises) that you can view on your own schedule. During the hands-on in-person session, you will learn how to solve the exercise problems.
Microsoft Excel is a commonly used program to record and store datasets with headings, rows, and columns. In this class, we will explore data with sorting and filtering functions, and transform data into summary tables. You will work through data examples to create pivot tables, apply conditional formatting, and prepare your figures for use in other programs.
The FAIR Data Principles are a set of guiding principles to make data Findable, Accessible, Interoperable and Reusable. In this session, we will review these principles, discuss the challenges of data sharing, and offer practical tips for how sharing can be integrated into a researchers workflow.
Most of us know that the US Census Bureau conducts the Decennial Census, but did you know they are also responsible for conducting censuses of local governments and US economics as well as surveys of small areas, business owners, income, and populations? Much of this data is even available down to the neighborhood level. It is an invaluable resource for learning about a community, especially as you plan the development of an intervention or grant proposal. Learn how to navigate the Census Bureau effectively to gather key data as a first step to learning about a community.
In this hands-on workshop, learn how to manage your work with the version control system Git. Git helps keep your files safe from accidental deletion, tracks who made what change when, and lets multiple people work on the same project without overwriting each other's work. We'll cover using Git from the Unix shell and through Github online. No previous experience with the command line is necessary, although some basic knowledge is recommended.
Need to find a dataset to act as a control for your study? Or do you want to reuse open access data? This class will offer tips for locating and citing data and include hands-on exercises to explore directories of data repositories and data journals.
The US Centers for Disease Control and Prevention is the leader of public health in the US. It administers multiple surveys, gathers vital statistics, and tracks infectious diseases, and much more, all the while making this data readily available to the public. Like all Federal agencies, though, it is a complex organization which is reflected in their Web site. During this class, we will explore key data initiatives of the CDC, focusing on publicly available data sites that allow you to find data through their interfaces.
There are thousands of federal, state, and local government sites that link the public to their data. Like much of the internet, it is easy to get lost trying to find data useful to your research unless you know where to go. This class is designed to introduce participants to commonly used measures of social justice through publicly available data sites. We will begin by exploring data sites that focus on social justice issues, such as income, education, pollution, housing, and healthy/risky behaviors.
Need to find a dataset to act as a control for your study? Or do you want to reuse open access data? This workshop offers tips for locating and citing data, and includes hands-on exercises to explore directories of data repositories and data journals.
Do you want to track and organize your projects more efficiently, especially in a remote or distributed environment? Are you writing code or manuscripts with others and need to know who did what, when? In this class, learn the basics of version control and how it helps keep your work safe and reliable. Then we'll dive into Github to see how it tracks the changes you or your collaborators make to uploaded files, and how that can help make your research more reproducible.
Did you know that for each minute of planning at the beginning of a project, you will save yourself roughly 10 minutes of headache later? This session will provide practical tips for organizing, naming, documenting, storing and preserving your data.